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Abstract

This paper investigates the effect of tuned mass dampers with nonlinear viscous damping elements. The tuned mass

damper is assumed to be attached to a single-degree-of-freedom system excited by white noise. Statistical linearization is

used to analyze the system and the accuracy of this procedure is verified by stochastic simulation. The optimal linear tuned

mass damper is defined in terms of minimizing the standard deviation of the structural displacement. The structural

damping is shown to have little influence on the optimal parameter values for the linear tuned mass damper. The

(approximate) optimal nonlinear tuned mass damper is defined as the system, which by statistical linearization identifies an

optimal equivalent linear tuned mass damper. This is shown to lead to explicit expressions for the optimal parameter values

of the nonlinear tuned mass damper. The fact that statistical linearization leads to very accurate results, implies that the

optimal nonlinear tuned mass damper is practically as effective as a linear tuned mass damper. However, the nonlinear

tuned mass damper must be tuned to a specific amplitude and excitation intensity, in contrast to a conventional linear

tuned mass damper. The theory is demonstrated for a tuned mass damper with viscous power-law damping and for a tuned

mass damper with Bingham-type damping. The probability distribution of the displacement of the structure seems to be a

close approximation to a Gaussian distribution despite the nonlinearity. Furthermore, it is shown by stochastic simulation,

that the approximate optimal nonlinear tuned mass damper (identified via statistical linearization) is in fact very close to

the true optimum.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Lightly damped structures may experience large vibrations when subjected to dynamic loading. Examples
include wind load on high rise buildings, towers and chimneys, wind and wave load on offshore structures and
bridges and earthquake excitation of all types of structures. The vibration may lead to fatigue damage or
structural collapse, and measures will therefore often be taken to reduce the vibrations, either in the design
phase, or by retrofitting an existing structure.

Installation of a tuned mass damper is one way of reducing the vibration level of the structure. The tuned
mass damper is an additional mass attached to the primary structure by a spring and a damper in parallel, and
it was shown by Den Hartog [1], how the spring and damper coefficients should be chosen, in order to
minimize the maximum frequency response of a given structural mode. This method by Den Hartog is
sometimes referred to as the fixed points theory, and it was shown by Snowden [2], how it can be used for
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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systems, where the damping is introduced via a complex stiffness. In this case the excitation is assumed to be
harmonic. Alternatively, one can assume a white-noise excitation, i.e. a random signal with a flat spectrum.
The structural response is then minimized by minimizing the area under the frequency response function,
which is proportional to the variance of the response. A number of optimal solutions for various types of
excitation and various optimization objectives have been given by e.g. Warburton and Ayorinde [3–6], for
several types of structural elements. Active tuned mass dampers have been considered by e.g. Ankireddi and
Yang [7] minimizing the variance of the structural response, and by Ricciardelli et al. [8] using linear quadratic
regulator theory.

In the papers mentioned above, the damping element connecting the additional mass is assumed to be
linear. However, many commercially available dampers do display nonlinear viscous behavior. One example is
the Jarret Elastomeric Spring Damper, which obeys a nonlinear viscous power law with reasonable accuracy,
Terenzi [9]. Devices, where the damping is obtained by friction between structural elements, are examples of
other nonlinear types of behavior experienced in engineering practice, see e.g. Ref. [10]. The optimum
performance of a tuned mass damper with friction was studied by Inaudi and Kelly [11] using statistical
linearization. Ricciardelli and Vickery [12] considered dry friction in a tuned mass damper with harmonic
excitation.

In the present paper, the damping device connecting the primary and secondary mass is assumed to behave
according to a nonlinear viscous law. The excitation is given by a white-noise process, and the objective of the
passive control is to minimize the variance of the displacement of the structure. The nonlinear system is
analyzed by statistical linearization and stochastic simulation taking the structural damping into account.
Statistical linearization is relatively simple to use compared to methods such as stochastic averaging or
perturbation techniques. If statistical linearization is sufficiently accurate to be applied for design purposes, it
should therefore be unnecessary to use these more complicated approaches. Stochastic simulation is mainly
used to assess the accuracy of the statistical linearization procedure for the system considered.

2. Equations of motion

A schematic model of the tuned mass damper is shown in Fig. 1. The equations of motion are given by

ðm1 þm2Þ €x1 þm2 €x2 þ c1 _x1 þ k1x1 ¼ m1W ðtÞ,

m2 €x1 þm2 €x2 þ Fdð _x2Þ þ k2x2 ¼ 0 ð1a;bÞ

in which m1 is the effective mass of the structure or structural component (primary mass), and m2 is the mass
of the tuned mass damper (secondary mass). m2 will often be much smaller than m1 for practical reasons. k1 is
the effective stiffness of the structure, and k2 is the stiffness of the device connecting the tuned mass damper to
the structure. The structure is assumed to have a small linear viscous damping with damping coefficient c1.
The displacement of the structure is denoted x1, and the relative displacement between the structure and the
tuned mass damper is denoted x2. A dot indicates the derivative with respect to time. The damping device
connecting the primary and secondary mass exerts a viscous force Fdð _x2Þ between the two elements. m1W ðtÞ is
the external force, which is assumed to be a white-noise,

E½W ðtÞW ðtþ DtÞ� ¼ 2pSWdðDtÞ, (2)
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Fig. 1. Schematic model of tuned mass damper.
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where scaling by m1 is chosen for convenience. E½ � is the mean value operator, and dð Þ is the Dirac delta
function. SW is the intensity of the white noise W ðtÞ.

Initially, the primary structure is considered without the tuned mass damper. This corresponds to the case
where m2 ¼ 0. The equation of motion is in this case given by

€x1 þ 2z1o1 _x1 þ o2
1x1 ¼W ðtÞ; z1 ¼

c1

2
ffiffiffiffiffiffiffiffiffiffiffi
m1k1

p ; o1 ¼

ffiffiffiffiffiffi
k1

m1

s
, (3a2c)

where z1 is the damping ratio, and o1 is the natural frequency for the structure without the tuned mass
damper. The system is seen to be a simple linear oscillator excited by white noise, and the standard deviation
of the response is given by, see e.g. Ref. [13], Example 3–12,

x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pSW

2z1o3
1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1pSW

c1k1

s
, (4)

which is a measure of the magnitude of the displacement. x0 is used as a length scale of the response. Choosing
o�11 as a time scale, the non-dimensional displacements and time are given by

yi ¼
xi

x0
; t ¼ o1t. (5a,b)

With this non-dimensional time the single-degree-of-freedom system has a period of 2p. Introducing these
non-dimensional variables the equations of motion can be written as

ð1þ mÞ €y1 þ m €y2 þ 2z1 _y1 þ y1 ¼ UðtÞ,

m €y1 þ m €y2 þ f dð _y2Þ þ g2my2 ¼ 0, ð6a;bÞ

where m, g and f dð _y2Þ are given by

m ¼
m2

m1
; g ¼

o2

o1
; o2 ¼

ffiffiffiffiffiffi
k2

m2

s
; f dð _y2Þ ¼

F dð _x2Þ

x0k1
(7a2d)

in which m is the mass ratio, and g is the ratio between the frequency of the damper o2 and the frequency of the
structure. f dð _y2Þ is a non-dimensional viscous damping force. The intensity of the non-dimensional white noise
UðtÞ ¼W ðtÞ=ðm1x0o2

1Þ can be shown to be

SU ¼
2z1
p

(8)

The non-dimensional system is seen to depend only on the parameters m, g, z1 and the parameters describing
the non-dimensional viscous damping force f d ð _y2Þ. It is observed, that the standard deviation of the structure
is unity in this formulation, when the tuned mass damper is absent.
3. Statistical linearization

Statistical linearization is now applied to replace the nonlinear equations of motion by a set of equivalent
linear equations. The nonlinear (Eq. 6b) is replaced by

€y1 þ €y2 þ 2z2g _y2 þ g2y2 ¼ 0, (9)

where the nonlinear damping term f dð _y2Þ has been replaced by the linear damping term 2z2gm _y2, and the
equation has been divided by m. z2 is here an equivalent damping ratio for the secondary system, i.e.
z2 ¼ c2;eq=2

ffiffiffiffiffiffiffiffiffiffiffi
m2k2

p
, if the term c2;eq _x2 is used to replace F dð _x2Þ in the original Eq. (1b). The relation between

the original nonlinear system and the equivalent linear system is established by minimizing the variance of
the difference between the right-hand side of the two systems in the least-squares sense, see e.g. Ref. [14].
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z2 is obtained by

2z2gm ¼ E
q
q _y2

f dð _y2Þ

� �
¼

Z 1
�1

p _y2 ð
_y2Þ

q
q _y2

f dð _y2Þd _y2, (10)

where p _y2ð
_y2Þ is the probability density of _y2. Eq. (10) can be evaluated, if the probability density of the

equivalent linear system is used in the evaluation of the integral, an approach frequently used in connection
with statistical linearization. For the equivalent linear system the distribution for _y2 is Gaussian

p _y2ð
_y2Þ ¼

1ffiffiffiffiffiffi
2p
p

s _y2
exp �

_y2
2

2s2_y2

 !
, (11)

where s _y2 is the standard deviation of _y2. s _y2 can be evaluated from the linear system Eq. (6a), and Eq. (9) by

s2_y2 ¼ SU

Z 1
�1

jH _y2
ðrÞj2 dr, (12)

where H _y2
ðrÞ is the frequency response function relating UðtÞ and _y2 in the frequency domain. The frequency

response function is determined by assuming harmonic excitation and harmonic response,

yj ¼ Aje
irt; _yj ¼ irAje

irt; UðtÞ ¼ U0e
irt, (13a2c)

where r is a non-dimensional excitation frequency and i is the imaginary unit. The frequency response function
is defined as the ratio between the response and the excitation. Substituting the expressions in Eq. (13) into the
equivalent linear equations of motion, the following expression is obtained:

H _y2
ðrÞ ¼

irA2

U0
¼

ir3

ð�ð1þ mÞr2 þ 2z1irþ 1Þð�r2 þ 2z2girþ g2Þ � mr4
. (14)

The integral in the expression in Eq. (12) can in the present case be evaluated analytically. Using formulas
from Gradshteyn and Ryzhik [15] the expression is evaluated as

s2_y2 ¼
pSU

2ðl� mÞ
lz1g3 þ z2 þ 4z1z2gc

mc2gþ z1z2ð1þ 4z1gcÞ þ lz1z2g2ð4z2c� 2þ lg2Þ
,

l ¼ 1þ m; c ¼ z1gþ z2. ð15a2cÞ

Alternatively, s _y2 can be obtained by solving the Lyapunov equation corresponding to the equivalent linear
system Eqs. (6a) and (9). It is observed that Eq. (10) is implicit, since s _y2 depends on z2.
4. Optimal solution for equivalent linear system

The optimal solution for the equivalent linear system is defined as the solution, which minimizes the
standard deviation of the response sy1

. If sy1
¼ 1, the tuned mass damper has no effect, and if sy1

¼ 0, the
vibration of the primary structure is completely suppressed. The value will generally be in the range 0osy1

o1,
when the tuned mass damper is installed. The standard deviation of the response is evaluated as

s2y1 ¼ SU

Z 1
�1

jHy1
ðrÞj2 dr, (16)

where Hy1
ðrÞ is the frequency response function relating UðtÞ and y1 in the frequency domain. Substituting the

expressions in Eq. (13) into (6a) and (9), this frequency response function is determined as

Hy1
ðrÞ ¼

A1

U0
¼

�r2 þ 2z2girþ g2

ð�ð1þ mÞr2 þ 2z1irþ 1Þð�r2 þ 2z2girþ g2Þ � mr4
. (17)
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Again, formulas from Gradshteyn and Ryzhik [15] are used to evaluate the integral in Eq. (16). s2y1 is
determined as

s2y1 ¼
pSU

2

z2 þ cð4z1z2gþ mg2Þ þ lz2g2ð4z2c� 2þ lg2Þ

mc2gþ z1z2ð1þ 4z1gcÞ þ lz1z2g2ð4z2c� 2þ lg2Þ
, (18)

where l and c are given in Eq. (15). The optimal values of g and z2, which minimize the variance of the
response, can be determined by identifying the stationary points of s2y1 . This corresponds to solving the two
equations

qs2y1
qg
¼ 0;

qs2y1
qz2
¼ 0. (19a,b)

The solution to these two equations cannot to the authors knowledge be given in closed form in the general
case. However, if the structural damping is neglected, the solution can be obtained. For z1! 0 Eqs. (19a,b)
yield the following solution:

gopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ m

2ð1þ mÞ2

s
; zopt2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð4þ 3mÞ

8ð1þ mÞð2þ mÞ

s
for z1 ¼ 0, (20a,b)

where gopt and zopt2 are used to denote the optimal values of g and z2, respectively, for the equivalent linear
system for z1! 0. This solution is seen to correspond to solutions given by e.g. Warburton [6] or Ankireddi
and Yang [7]. For m51 Eqs. (20a,b) reduce to

gopt ’ 1; zopt2 ’
1
2

ffiffiffi
m
p

for z1 ¼ 0. (21a,b)

The first approximation indicate, that o1 ’ o2, i.e. that the frequency of the tuned mass damper should be
approximately equal to the frequency of the structure. This is in accordance with classical results from the
theory of tuned mass dampers [1]. In the case where z1a0, the optimal solution can be obtained numerically
by determining the minimum of Eq. (18).

In Fig. 2 the results of such a procedure are shown. gopt and zopt2 are depicted as a function of the mass ratio
m for four different values of the structural damping ratio: z1 ¼ 0, 0.03, 0.1 and 0.3. The results are obtained by
using the MATLAB function FMINSEARCH, and by Eqs. (20a,b) for z1 ¼ 0. As seen from Fig. 2b, it is impossible
to distinguish the four lines, and the influence of z1 on zopt2 is thus seen to be negligible. In Fig. 2a the lines can
be distinguished, but only in the case where z1 ¼ 0:3 does the line deviate significantly from the solid line
representing z1 ¼ 0. From the results shown in Fig. 2 it seems reasonable to assume, that z1 can be neglected in
the evaluation of gopt and zopt2 , i.e. that these two parameters can be determined by Eqs. (20a,b).
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Fig. 2. (a) Optimal frequency ratio and (b) optimal damping ratio, (–) z1 ¼ 0, (- -) z1 ¼ 0:03, (- � -) z1 ¼ 0:1, ð� � �Þ z1 ¼ 0:3.
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In order to investigate this point further, the effective damping of the system is considered. By analogy with
a single-degree-of-freedom system the effective damping ratio is introduced as, see Ref. [16],

ze ¼
pSW

2o3
1s2x1
¼

z1
s2y1

. (22)

The effective damping increase is then defined as

Dz ¼ ze � z1. (23)

The effective damping increase can be evaluated analytically from Eq. (18) as

Dz ¼
mz2cg

z2 þ cð4z1z2gþ mg2Þ þ lz2g2ð4z2c� 2þ lg2Þ
(24)

with l and c defined in Eq. (15). The optimal effective damping increase Dzopt is obtained by evaluating Dz for
gopt and zopt2 . For z1 ¼ 0 the optimal value is given by inserting Eqs. (20a,b) in the expression for Dz for z1 ¼ 0.
Dzopt is then given by

Dzopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ mÞm
16þ 12m

s
for z1 ¼ 0. (25)

For m51, Dzopt is approximated by

Dzopt ’ 1
4

ffiffiffi
m
p
’ 1

2
zopt2 for z1 ¼ 0. (26)

The tuned mass damper is thus seen to increase the effective damping ratio of the system by approximately
half the value of the damping ratio of the tuned mass damper. For z1a0, gopt and zopt2 are not known
analytically. However, an approximation to Dzopt can be obtained by assuming, that gopt and zopt2 can be
approximated by Eqs. (20a,b) and substituting these values into Eq. (24). This leads to the following:

Dzopt ’
L0 þ L1z1

K0 þ K1z1 þ K2z
2
1

; L0 ¼
m2ð4þ 3mÞ
8ð2þ mÞ

; L1 ¼
m3=2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3m
1þ m

s
,

K0 ¼
ðmð4þ 3mÞÞ3=2

4
ffiffiffiffiffiffiffiffiffiffiffi
1þ m
p

ð2þ mÞ
; K1 ¼

mð24þ 32mþ 11m2Þ
4ð2þ mÞð1þ mÞ

; K2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð4þ 3mÞ
1þ m

s
. ð27a2fÞ

The expression is seen to reduce to Eq. (25) for z1! 0.
In Fig. 3 Dzopt is evaluated for four different values of the structural damping: z1 ¼ 0, 0.03, 0.1 and 0.3. In

Fig. 3a the exact values of Dzopt are evaluated by determining gopt and zopt2 using the MATLAB function
FMINSEARCH corresponding to the approach used in Fig. 2 for z1a0. In Fig. 3b Dzopt is determined by Eq. (27),
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which is only an approximation in the cases z1a0. Comparing the results in Fig. 3a with the results in Fig. 3b
it is seen, that Eq. (27) gives a very good approximation to the optimal effective damping increase. It is
furthermore seen, that Dzopt increases with decreasing values of structural damping z1. As indicated by
Eq. (26), Dzopt also increases with increasing values of m, as one would expect. Based on the results presented in
this section it is concluded, that gopt and zopt2 can be accurately estimated from Eqs. (20a,b) for z1t0:3. In the
following this approximation will be used.
5. Stochastic simulation

Stochastic simulation, also known as Monte Carlo simulation, offers an alternative to statistical
linearization, when nonlinear stochastic systems are considered. Using this method a record of the excitation
process is generated, and a sample of the stochastic response is obtained by direct numerical simulation of the
equations of motion. This method is generally time consuming, since long records are needed to evaluate the
statistics of the response. However, the method is convenient, when the quality of an approximate solution
technique such as statistical linearization needs to be assessed.

The first issue to consider in connection with stochastic simulation is the simulation of the excitation record.
An ideal white noise is a process with an infinite variance and a correlation time, which is infinitely small. It
thus represents an idealization, which can never occur in the physical reality, and which cannot be represented
by a digital record generated by a computer. The white noise applied as excitation process is thus an
approximation to an ideal white noise. Consider a sequence of independent random numbers Ui, each of
which has a Gaussian distribution with zero mean and standard deviation sU . A stochastic process UðtÞ is
generated by linear interpolation of the random numbers Ui, each separated by a time increment
Dt ¼ tiþ1 � ti, see Fig. 4. As can be derived from results given by Clough and Penzien [17], the power spectral
density of this process is given by

SU ðrÞ ¼ S0

sinð1
2
rDtÞ

1
2

rDt

" #4
; S0 ¼ s2U

Dt
2p

, (28a,b)

where r is a non-dimensional excitation frequency. The function is shown in Fig. 4b, and it is observed, that
the spectrum is approximately constant SU ðrÞ ’ S0 for rDt51. If the system has a typical frequency hri, such
that hriDt51, the excitation will be experienced as a close approximation to white noise by the system. Due to
the normalization discussed in Section 2 a typical frequency for the system is unity, i.e. hri ’ 1. hriDt ’ Dt will
therefore be chosen as a small number in the following examples.

In order to carry out the numerical integration the nonlinear Eqs. (6a,b) of motion are rewritten in state-
space format as

_z ¼ GðzÞ þ BUðtÞ; zT ¼ ½y1 y2 _y1 _y2�, (29a,b)
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Fig. 4. (a) Piecewise linear process UðtÞ and (b) spectral density of piecewise linear process.
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Table 1

Algorithm for fourth-order Runge–Kutta integration

z1 ¼ GðziÞDtþ BUðtiÞDt
z2 ¼ Gðzi þ

1
2
z1ÞDtþ Bð1

2
UðtiÞ þ

1
2
Uðtiþ1ÞÞDt

z3 ¼ Gðzi þ
1
2
z2ÞDtþ Bð1

2
UðtiÞ þ

1
2
Uðtiþ1ÞÞDt

z4 ¼ Gðzi þ z3ÞDtþ BUðtiþ1ÞDt
ziþ1 ¼ zi þ

1
6z1 þ

1
3z2 þ

1
3z3 þ

1
6z4
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where z is a non-dimensional state-space vector, and UðtÞ is the excitation process generated by the procedure
described in the previous paragraph. GðzÞ and B are given by

GðzÞ ¼

0 0 1 0

0 0 0 1

�1

l� m
g2m
l� m

�2z1
l� m

0

1

l� m
�lg2

l� m
2z1
l� m

0

2
6666666664

3
7777777775
z�

0

0

�f dðz4Þ

l� m

lf dðz4Þ

lm� m2

2
6666666664

3
7777777775
,

BT ¼ 0 0
1

l� m
�1

l� m

� �
ð30a;bÞ

with l given by Eq. (15b). The integration procedure, which is used, is fourth-order Runge–Kutta integration.
The algorithm of this integration scheme is given in Table 1, where it is assumed, that the state-space vector zi

at time ti is known, and the state-space vector ziþ1 at time tiþ1 is evaluated.

6. Examples of systems with nonlinear viscous damping

In order to investigate the accuracy of the statistical linearization procedure for tuned mass dampers with
nonlinear damping, two examples are considered in the following. It is assumed that optimal tuning is used for
the mass damper, so the theoretical results obtained by statistical linearization are only investigated in the
vicinity of this optimum.

6.1. Viscous power-law damping

The first example is a damping force, which obeys a nonlinear viscous power law. This force is expressed as

Fdð _x2Þ ¼ b sign ð _x2Þ j _x2j
n, (31)

where b is the damping coefficient and has the dimension mass� length1�n � timen�2, and n is termed the
power-law exponent. It is assumed that n is given for a specific type of dampers, and that the objective is to
determine the optimal size of the damper by selecting the right coefficient b. A damping of this type has been
shown to give a reasonable representation of the behavior of the Jarret Elastomeric Spring Damper, Terenzi
[9]. Lin and Chopra [18] have considered this type of damping in the investigation of earthquake-induced
response. The probabilistic characteristics of an oscillator with this type of damping and white-noise excitation
was studied by Rüdinger and Krenk [19]. For n ¼ 1 the linear viscous damping law is retrieved, and for n ¼ 0
the case of dry friction appears. Rescaling by Eq. (7d) yields

f dð _y2Þ ¼ Z signð _y2Þ j _y2j
n; Z ¼ b

m
ðn�2Þ=2
1 ffiffiffiffiffi

k1

p
pSW

c1

� �ðn�1Þ=2
, (32a,b)
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where Z is a non-dimensional damping coefficient. Z will normally be assumed to be the design parameter,
while n will be fixed for the specific type of damper. The derivative of Eq. (32) is given by

qf dð _y2Þ

q _y2

¼ Zn j _y2j
n�1. (33)

The expression in Eq. (10) relating the nonlinear system to the equivalent linear system can now be
evaluated as

2z2gm ¼
Z 1
�1

Zn j _y2j
n�1ffiffiffiffiffiffi

2p
p

s _y2
exp �

_y2
2

2s2_y2

 !
d _y2 ¼

ZnGð1
2
nÞ ð

ffiffiffi
2
p

s _y2Þ
n�1ffiffiffi

p
p . (34)

If n is assumed given, the optimal value of the nonlinear damping coefficient Zopt is obtained by inserting the
optimal values of z2 and g in Eq. (34). Zopt is then given by

Zopt ¼

ffiffiffi
p
p
ð
ffiffiffi
2
p

s _y2Þ
1�n

n Gð1
2
nÞ

2mzopt2 gopt, (35)

where zopt2 and gopt can be approximated by Eqs. (20a,b) for small levels of structural damping. The standard
deviation of the non-dimensional relative velocity s _y2 is evaluated by Eq. (15) using optimal values for z2 and
g. It is observed, that Eq. (35) is explicit, since s _y2 does not depend on Z.
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In Fig. 5, the optimal nonlinear damping coefficient is shown as function of the power-law exponent.
In Fig. 5a the mass ratio is m ¼ 0:01, and in Fig. 5b the mass ratio is m ¼ 0:1. In both cases four values of the
structural damping ratio have been considered: z1 ¼ 0:001, 0.003, 0.01 and 0.03. For n ¼ 1 the results for
the linear system are retrieved, i.e. Zopt ¼ 2mzopt2 gopt. It is observed, that the structural damping ratio has a
large influence on the optimal nonlinear damping coefficient, when nD/ 1.

In Fig. 6 the standard deviation of the non-dimensional structural displacement y1 is evaluated as function
of the power-law exponent for optimal parameter values. In Fig. 6a the mass ratio is m ¼ 0:01, and in Fig. 6b
the mass ratio is m ¼ 0:1. Again, four values of the structural damping ratio have been considered: z1 ¼ 0:001,
0.003, 0.01 and 0.03. The solid lines correspond to the theoretical results obtained by statistical linearization.
The dots correspond to results obtained by stochastic simulation of the nonlinear system using a non-
dimensional time step of Dt ¼ 2p=50 (50 steps per typical period) and simulating 2000 typical periods of
vibration (simulation time: 2p � 2000). The lines are horizontal, since for any value of n an equivalent linear
system ðn ¼ 1Þ is identified, and the two systems are assumed to have the same optimal value of sy1

. The results
obtained by stochastic simulation (the dots) will not be completely horizontal, since statistical linearization is
only an approximation. The results from theory and simulation are seen to agree very well confirming the
applicability of the statistical linearization procedure for the system investigated.

The results in Fig. 6 suggest, that the optimal parameters for the nonlinear system obtained by this
procedure have the same effect as an optimal linear tuned mass damper. However, since the statistical
linearization procedure is an approximation, the solution is not optimal in a strict mathematical sense, and it
could be argued, that a different choice of parameter values for the nonlinear system might lead to improved
performance. In Fig. 7 contour plots of sy1

are shown as functions of z2 and g for m ¼ 0:01 and z1 ¼ 0:001. In
Fig. 7a n ¼ 0:4, and in Fig. 7b n ¼ 1:4. The contour plots are based on estimates of sy1

for 5� 5 values of Z
and g around the approximate optima Zopt and gopt. The lines in the plot show values of sy1

¼

0:0103; 0:0206; 0:0309; 0:0412; . . . : Since the plots are based on results obtained by stochastic simulation the
contours are a bit irregular. All estimates of sy1

are obtained by stochastic simulation of 2000 mean periods
with 50 steps per period. As seen by the figures, the optimum for the nonlinear system seems to be very close to
Z ¼ Zopt and g ¼ gopt, confirming the accuracy of using this statistical linearization procedure to determine
optimal parameter values for the nonlinear tuned mass damper. It is observed from Fig. 7, that the system is
much more sensitive to variations in the value of g, than to variations in the value of Z.

The next issue, which will be investigated, is the probability density of the response. Initially, the non-
dimensional velocity difference _y2 ¼ z4 is investigated. In Figs. 8 and 9, the probability density is shown for
optimal damping parameters and different combinations of the mass ratio and power-law exponent. In Fig. 8
the power-law exponent is n ¼ 0:2, and in Fig. 9 the power-law exponent is n ¼ 2. In Figs. 8a and 9a the mass
ratio is m ¼ 0:01, and in Figs. 8b and 9b the mass ratio is m ¼ 0:1. In all cases two different values of the
structural damping ratio are considered: z1 ¼ 0:003 and 0.01. The solid line corresponds to the Gaussian
distribution in Eq. (11), which is the distribution of the velocity difference for the equivalent linear system. The
crosses and circles represent scaled histograms of response records obtained by stochastic simulation of the
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nonlinear system. The time step is the same as the one used in the simulations discussed in the previous
paragraph, but in this case 20,000 typical periods have been simulated in order to obtain a good estimate of
the probability density. The probability density of the nonlinear system is seen to deviate substantially from
the Gaussian distribution. For n ¼ 0:2 the probability density seems to approximately follow an exponential
function in the range considered. For n ¼ 2 the probability density has a relatively flat top and drops to zero
faster than the Gaussian probability density, in contrast to the case where n ¼ 0:2. In view of this deviation
from the Gaussian distribution, it might seem surprising, that the statistical linearization produces such
accurate results for the standard deviation of the structural displacements, as shown in Fig. 6. The structural
damping is seen to have a very small effect on the probability density.

In Figs. 10 and 11 the probability density for the structural displacement is shown for the same system
parameters and simulation parameters as in Figs. 8 and 9. It is observed, that the probability density for the
structure with a nonlinear viscous damper is approximately Gaussian in all cases. This information would
facilitate the evaluation of extreme value statistics for the nonlinear system.

6.2. Bingham model

The second example, which will be considered, is a tuned mass damper with a damping element consisting of
a connection in parallel between a linear viscous damper and a dry friction element. This damping model is



ARTICLE IN PRESS

0 2 4–4 –4

10

10

10

10
0

P
ro

b
. 

d
en

si
ty

: 
p

z 1

σ z 1

Structural displacement: z
1
 / σ

z
1

0 2 4

10

10

10

10
0

P
ro

b
. 

d
en

si
ty

: 
p

z 1

σ z 1

Structural displacement: z
1
 / σ

z
1

a b

Fig. 11. Probability density of structural displacement for optimal parameters, n ¼ 2, (a) m ¼ 0:01 and (b) m ¼ 0:1, (–) theoretical

expression, ð�Þ z1 ¼ 0:003, ð�Þ z1 ¼ 0:01.

0 2 4–4 –4

10

10

10

10
0

P
ro

b
. 
d
en

si
ty

: 
p

z 1

σ z 1

Structural displacement: z
1
 / σ

z
1

0 2 4

10

10

10

10
0

P
ro

b
. 
d
en

si
ty

: 
p

z 1

σ z 1

Structural displacement: z
1
 / σ

z
1

a b

Fig. 10. Probability density of structural displacement for optimal parameters, n ¼ 0:2, (a) m ¼ 0:01 and (b) m ¼ 0:1, (–) theoretical

expression, ð�Þ z1 ¼ 0:003, ð�Þ z1 ¼ 0:01.
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sometimes referred to as the Bingham model. Mathematically, this nonlinear viscous damping force can be
expressed as

F dð _x2Þ ¼ b1 signð _x2Þ þ b2 _x2, (36)

where b1 is the dry friction damping coefficient, and b2 is the linear viscous damping coefficient. Again,
Eq. (7d) is used for rescaling, which leads to the following non-dimensional damping force:

f dð _y2Þ ¼ Z1 signð _y2Þ þ Z2 _y2; Z1 ¼
b1
m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

k1pSW

r
; Z2 ¼

b2ffiffiffiffiffiffiffiffiffiffiffi
k1m1

p , (37a2c)

where Z1 and Z2 are non-dimensional damping coefficients related to dry friction and linear viscous damping,
respectively. The derivative of this non-dimensional force is evaluated as

qf dð _y2Þ

q _y2

¼ 2Z1dð _y2Þ þ Z2, (38)

where dð Þ is the Dirac delta function. The relationship between the nonlinear system and the equivalent linear
system is established by evaluating the integral in Eq. (10)

2z2gm ¼

ffiffiffiffiffiffiffiffiffiffi
2

ps2_y2

s
Z1 þ Z2 (39)
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The optimal nonlinear system is defined as the system, which by statistical linearization, leads to an optimal
equivalent linear system. If Z2 is assumed to be given, the optimal value of Z1 is obtained as

Zopt1 ¼

ffiffiffiffiffiffiffiffiffiffi
ps2_y2
2

s
ð2mzopt2 gopt � Z2Þ (40)

requiring that Z2p2mzopt2 gopt. Alternatively, if Z1 is assumed to be given, the optimal value of Z2 is obtained as

Zopt2 ¼ 2mzopt2 gopt �

ffiffiffiffiffiffiffiffiffiffi
2

ps2_y2

s
Z1. (41)

In both cases the expressions are seen to be explicit, since s _y2 does not depend on neither Z1 nor Z2. For given
values of the mass ratio and structural damping, the optimal values of Z1 and Z2 are related linearly.

It is now assumed that the dry friction coefficient is given, and that the optimal viscous damping coefficient
needs to be evaluated. In Fig. 12, the optimal viscous damping coefficient is shown as a function of the dry
friction coefficient. In Fig. 12a, the mass ratio is m ¼ 0:01 and in Fig. 12b the mass ratio is m ¼ 0:03. Again,
four values of the structural damping have been considered: z1 ¼ 0:001, 0.003, 0.01 and 0.03. The linearity
observed in Eq. (41) is confirmed. For large values of the dry friction coefficient the optimal linear viscous
damping coefficient becomes negative. In this case the system is not realizable by a passive device. The
structural damping ratio is seen to have a large influence on the optimal value of the linear viscous damping
coefficient.

In Fig. 13, the standard deviation of the structural displacement y2 is evaluated as a function of the dry
friction coefficient for optimal values of the linear viscous damping coefficient. The range of parameters
considered is the same as in Fig. 12, so in the upper right corner of the figure the linear viscous damping
coefficient is negative. The solid lines correspond to the results obtained by statistical linearization, and the
dots correspond to results obtained by stochastic simulation. The simulation parameters are the same as
the ones used in the previous subsection for Fig. 6. Again, the agreement confirms the applicability of the
statistical linearization procedure. This means that the vibration reduction obtained by a linear tuned mass
damper for a given mass ratio can also be achieved by a tuned mass damper with nonlinear viscous damping.
However, in the nonlinear case the tuning depends on the structural damping and on the excitation intensity in
contrast to the linear case.

The next issue, which is considered, is the probability density of the velocity difference _y2 ¼ z4. This
probability is shown in Fig. 14 for various optimal parameter combinations. The mass ratio is m ¼ 0:03 and
the values of the nonlinear dry friction coefficient are Z1=ð

ffiffiffiffiffiffi
2p
p

mzopt2 goptÞ ¼ 0:3 and 0.5. As can be observed
from Fig. 12 this leads to positive optimal values of the linear viscous damping coefficient in all cases. Two
values of the structural damping ratio are considered: z1 ¼ 0:003 and 0.01. The solid line corresponds to
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F. Rüdinger / Journal of Sound and Vibration 300 (2007) 932–948946
statistical linearization results, which lead to a Gaussian distribution, while the circles and crosses are results
obtained by stochastic simulation of the nonlinear system. The simulation parameters are identical to those
used for Figs. 8–11 in the previous subsection. The figures show, that the probability densities are substantially
less non-Gaussian than for the case of viscous power-law damping investigated in the previous subsection.
A simple explanation for this could be, that the systems considered have a smaller degree of nonlinearity.

In Fig. 15, the probability density of the structural displacement y1 ¼ z1 is shown for the same para-
meters as in Fig. 14. The solid line is the Gaussian distribution resulting from the equivalent linear system
obtained by statistical linearization, while the crosses and dots originate from stochastic simulation of
the nonlinear system. As seen from the figure, the distribution is a very close approximation to a
Gaussian distribution, as observed in the previous subsection for a tuned mass damper with power-law viscous
damping.
7. Conclusion

A tuned mass damper with a nonlinear viscous damping element has been considered. The effect of this
device in terms of reducing the standard deviation of the displacement of a single-degree-of-freedom system
under white-noise excitation has been investigated taking the structural damping into account. Statistical
linearization is used to analyze the nonlinear tuned mass damper, and the accuracy of this procedure is
assessed by stochastic simulation. An approximate optimal solution for the nonlinear tuned mass damper is
defined as a system, which by statistical linearization identifies an optimal linear tuned mass damper.
Nonlinear tuned mass dampers with viscous power-law damping and with Bingham-type damping are used to
demonstrate the procedure. An example of the design procedure for a system with viscous power-law damping
is given in the appendix.

The main findings are summarized below:
�
 The structural damping has very little influence on the optimal parameter values for a linear tuned mass
damper.

�
 Statistical linearization gives very accurate estimates of the standard deviation of the structural
displacement. The probability distribution of the structural displacement is approximately Gaussian,
while the distribution of the velocity difference between the structure and the tuned mass damper deviates
substantially from a Gaussian distribution.

�
 The accuracy of the statistical linearization procedure implies that optimal linear and nonlinear tuned mass
dampers have practically the same effect in terms of reducing the structural displacement. The approximate
optimal parameter values for the nonlinear tuned mass damper obtained by this procedure are very close to
the true optimal parameter values.

�
 The approximate optimal solution for the nonlinear tuned mass damper can be given in explicit form.

�
 The optimal damping parameter values for the nonlinear tuned mass damper depend on the displacement
magnitude and excitation intensity, in contrast to the case of a linear tuned mass damper. However, the
response magnitude is relatively insensitive to the exact value of the damping parameters of the mass
damper, and it is therefore not important to know the magnitude of the vibration too accurately.

Finally, advantages and disadvantages of using linear or nonlinear tuned mass dampers will shortly be
discussed. The conventional linear tuned mass damper has the advantage that the tuning is independent of the
response magnitude and excitation intensity. However, it should be mentioned, that the optimum for the
damping coefficient is very flat, see Fig. 7, so this is not a major advantage of the linear tuned mass damper
over the choice of a nonlinear tuned mass dampers. Many commercially available dampers based on new
materials, e.g. elastomeric dampers [9], behave in a strongly nonlinear way. Since some of these dampers have
very high capacity relative to their size, it could be an economical advantage to use them rather than
conventional linear viscous dampers. Finally, it should be mentioned, that it may be an advantage to have a
damper with power-law viscous damping, since this limits the force for large velocities, if the power-law
exponent is smaller than 1.
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Appendix A. Example of design procedure

In order to demonstrate the design procedure the case of a tuned mass damper with a viscous power-law
damping is considered (Example 1). As mentioned earlier, this type of damping has been shown to give a
reasonable representation of the Jarret Elastomeric Spring Damper, Terenzi [9]. The structural mass m1,
structural damping coefficient c1 and structural stiffness k1 are assumed to be known, along with the power-
law exponent n. The spring stiffness k2 and nonlinear damper coefficient b are the design parameters to be
determined. It should be mentioned that choosing c1 ¼ 0 or very small (for lack of knowledge) gives a
conservative design. The design procedure can be carried out in the following four steps:
1.
 Initially, the magnitude of the secondary mass m2 must be chosen. If the necessary increase in the damping
ratio Dz is known, m can be determined from Fig. 3, and the secondary mass is then obtained from Eq. (7a).
2.
 The second step is to determine the optimal parameters gopt and zopt2 for the equivalent linear system. These
can be determined from Eqs. (20a,b), which is exact for z1 ¼ 0, and a close approximation for z1t0:3.
3.
 The third step is to find the optimal damping coefficient Zopt for the non-dimensional nonlinear tuned mass
damper. This parameter can be determined from Eq. (35), with s _y2 given by Eq. (15), where SU ¼ 2z=p as
seen by Eq. (8).
4.
 Finally, k2 and b are determined. k2 can be obtained in a straight forward way from Eqs. (7b) and (7c). b is
evaluated from Eq. (32), which requires knowledge of pSW=c1 ¼ x2

0k1=m2
1, see Eq. (4). In reality, the tuned

mass damper would typically be used for wind load, which is a broad band process, but not a white noise.
The most logical approach (in the authors opinion) is therefore to estimate x0, which would then be the
standard deviation of the displacement of the bare structure under critical wind conditions. SW is then the
intensity of an equivalent white noise generating a structural displacement of the same magnitude, and
thereby a somewhat indirect parameter.
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